klimtouw (examen vwo 1997-II)
alisa stelde deze vraag op 17 oktober 2019 om 19:28.snapt iemand hoe deze constructie eruit moet zien? (vraag 1)
Reacties
Theo de Klerk
op
17 oktober 2019 om 19:31
Precies zoals het er staat.
Het touw hangt gewoon vertikaal naar beneden. Iemand pakt de onderkant beet en slingert even hiermee. Daardoor komt het touw in beweging en je ziet die slingering langzaam naar boven bewegen. Dat is getekend.
Het is op zich niet anders dan een touw dat plat op de grond ligt en waar je aan een uiteinde een slinger geeft. Dan zie je ook een golf door het touw bewegen.
(Opgave eindexamen Natuurkunde Vwo 1997-II)
Het touw hangt gewoon vertikaal naar beneden. Iemand pakt de onderkant beet en slingert even hiermee. Daardoor komt het touw in beweging en je ziet die slingering langzaam naar boven bewegen. Dat is getekend.
Het is op zich niet anders dan een touw dat plat op de grond ligt en waar je aan een uiteinde een slinger geeft. Dan zie je ook een golf door het touw bewegen.
(Opgave eindexamen Natuurkunde Vwo 1997-II)
Jan van de Velde
op
17 oktober 2019 om 20:23
alisa plaatste:
snapt iemand hoe deze constructie eruit moet zien? (vraag 1)
Dat wat je bedoelt?
groet, Jan
alisa
op
18 oktober 2019 om 09:13
Sorry! ik heb de verkeerde vraag gekopieerd. Ik bedoelde vraag 2.
Theo de Klerk
op
18 oktober 2019 om 09:22
"Korter" moet je lezen als "golflengte neemt af".
Golflengte, frequentie (verandert niet) en snelheid zijn aan elkaar gekoppeld (λf=v). De snelheid hangt af van de spanning van de snaar of hier: het touw.
Het touw zal vlak bij het plafond het gewicht van het lagere touw moeten tegenwerken (spanning). Helemaal onderaan hoeft het laatste beetje touw niets tegen te werken (er zit geen touwgewicht onder).
Wat betekent dit voor de spanning in het touw bovenin, middenin, onderaan?
En hoe verandert daardoor de golfsnelheid in dat deel van het touw?
Hoe verandert daardoor de golflengte?
Elk punt in het touw beweegt horizontaal van links naar rechts en terug. De golf gaat vertikaal van boven naar beneden. De trilling voor een punt heeft de hoogste snelheid als het door de evenwichtsstand gaat. Voor C is dat waar C momenteel zit.
Twee punten eromheen (B en D) zitten in hun uiterste stand. De uiterste stand (amplitude) van C ligt hier tussenin. Hoe groot is die dus?
Welke formule ken je voor de maximale snelheid van een trillend punt door de evenwichtsstand als functie van de amplitude?
Golflengte, frequentie (verandert niet) en snelheid zijn aan elkaar gekoppeld (λf=v). De snelheid hangt af van de spanning van de snaar of hier: het touw.
Het touw zal vlak bij het plafond het gewicht van het lagere touw moeten tegenwerken (spanning). Helemaal onderaan hoeft het laatste beetje touw niets tegen te werken (er zit geen touwgewicht onder).
Wat betekent dit voor de spanning in het touw bovenin, middenin, onderaan?
En hoe verandert daardoor de golfsnelheid in dat deel van het touw?
Hoe verandert daardoor de golflengte?
Elk punt in het touw beweegt horizontaal van links naar rechts en terug. De golf gaat vertikaal van boven naar beneden. De trilling voor een punt heeft de hoogste snelheid als het door de evenwichtsstand gaat. Voor C is dat waar C momenteel zit.
Twee punten eromheen (B en D) zitten in hun uiterste stand. De uiterste stand (amplitude) van C ligt hier tussenin. Hoe groot is die dus?
Welke formule ken je voor de maximale snelheid van een trillend punt door de evenwichtsstand als functie van de amplitude?
alisa
op
18 oktober 2019 om 11:43
gebruik je dan v=(2ΠA)/T ? en welke richting teken je vc? is het altijd zo dat de snelheid het grootst is bij de evenwichtsstand?
Theo de Klerk
op
18 oktober 2019 om 16:01
Dat is vmax en die snelheid is altijd in het verlengde van de trilling.
Als je je boek nog eens naleest over trillingen dan is er energiebehoud. Bij de uiteinden staat het trillende voorwerp stil (alleen veer-energie), bij de evenwichtsstand is de veer-energie nul en is alles kinetische energie (dus snelheid) geworden.
Als je je boek nog eens naleest over trillingen dan is er energiebehoud. Bij de uiteinden staat het trillende voorwerp stil (alleen veer-energie), bij de evenwichtsstand is de veer-energie nul en is alles kinetische energie (dus snelheid) geworden.
alisa
op
21 oktober 2019 om 09:21
oke maar welke richting teken je vc ? en is het altijd zo dat de snelheid het grootst is bij de evenwichtsstand?
Theo de Klerk
op
21 oktober 2019 om 10:33
Wat denk je zelf? Het antwoord gaf ik al.
alisa
op
21 oktober 2019 om 10:43
ik dacht dat het een pijltje naar rechts moest zijn
Theo de Klerk
op
21 oktober 2019 om 11:06
Teken de golf nog eens op een iets later tijdstip. De golf beweegt omhoog. Welke kant gaat C dan op?
alisa
op
21 oktober 2019 om 11:09
naar links
Theo de Klerk
op
21 oktober 2019 om 11:30
Juist
alisa
op
21 oktober 2019 om 13:46
ah oke dus je tekent vc naar links. dankuwel!
Theo de Klerk
op
21 oktober 2019 om 13:51
In dit geval wel. Maar het is belangrijk dat je inziet dat de beweging van een punt in het touw volgt uit de beweging van de golf in het touw. Het punt E zal bijvoorbeeld naar rechts bewegen ("dieper" in de golf komen)
alisa
op
21 oktober 2019 om 17:57
ja dat begrijp ik!
jet
op
11 november 2024 om 16:24
wat is het antwoord bij vraag 1
Jan van de Velde
op
11 november 2024 om 16:48
Dag Jet,
Wat is het volgens jou? Als je de regels 1, 2 en 3 hieronder selecteert kun je drie hulpvragen voor je redenering lezen
redenering:
1. wat gebeurt er met de spankracht naarmate je hoger in het touw kijkt?
2. welke invloed heeft die grotere of kleinere spankracht op de golfSNELHEID hoger in dat touw?
3. wat gebeurt er daardoor met de golfLENGTE ?
Schrijf je redering maar hier, dan checken we je bedenksel wel.
Groet, Jan